
Python	Programming	Techniques

Eliot	Feibush

PICSciE
Princeton Institute for

Computational Science and Engineering

Log in	with	your	netID

Teaching	Assistants

Kyle		Lui
Nelson	Lin

Versatile
Very	efficient	for	user	/	programmer.

sample1.py

x = 0.
xmax = 10.
xincr = 2.

while x < xmax: # Here is a block of code
y = x * x
print(x, y)
x += xincr

Example

No	variable	declaration.
No	memory	allocation.

No	compiling,	no	.o	or	.obj	files
No	linking.

No	kidding	- Just	run.

Mac
Magnifying	glass:			idle (idle.app)

Command	line	from	terminal	also	possible.

Windows			
Start	Menu

Python	3.6
IDLE		(Python	GUI)

Python	
IDLE		

(Python	GUI)

1.		Interpreter
Integrated	Development	Environment	-- idle

Everything	that	a	program	can	have:

Variables
Strings
Lists
Expressions
Import	modules

Great	for	learning	&	trying	new	lines	of	code

idle

IDE – Integrated	Development	Environment
Color-coded	syntax
Statement	completion
Interpreter	retains	“scope”	after	program	ends

Written	in	Python	with	tkinter	GUI	module.

IDLE	à Preferences
Font,	Keys

Try	out	the	interpreter

Python 3.6.5
>>> 2+3
5
>>> a = 5.1
>>> b = 6.2
>>> print (a*b)
31.62

help()									dir()											type()

>>> help() # interpretor
help> keywords # if, else, for …
help> symbols # + - = / …
help> modules # math, os, sys
help> topics # USE UPPER CASE

Python Rosetta Stone

Variables

Case	sensitive
start	is	not	the	same	as	Start
count	is	not	the	same	as	Count
R	=	1	/	r

Start	with	a	letter,	not	a	number
Long	names	OK

Types	and	Operators
int #	scalar	variable,	holds	a	single	value
float
long
complex a	=	(3	+	4j) #	type(a)

+			- *			/			%			//		** #	Arithmetic	operators

+= #	Assignment	operators
-=
*=
/=

< <= > >= == != #	Comparison	operators
+													#	has	magic	overload	abilities!

Casts

int()
long()
float()

hex() #	string	representation
oct() #	string	representation

str() #	for	printing	numbers	+	strings

Built-in	Constants
True <type ‘bool’>
False <type ‘bool’>
None <type ‘NoneType’>

Indenting Counts!
Indent	4	spaces	or	a	tab -- be	consistent

:	at	end	of	line	indicates	start	of	code	block
requires	next	line	to	be	indented

Code	block	ends	with	an	outdent

Code	runs	but	not	as	desired	– check	your	indents

Program

Loops
Conditionals, Control
Functions

Keywords

Control
if else elif

while break continue

and or not

>>> help()
help > keywords

idle:		File	à New	File
Save					command-s
Run	à Run	Module F5		key

Programming	Exercise

Write	a	python	program	that	converts	degrees	to	
radians	for:	

0,	10,	20,	30,	...	180	degrees

edit	and	save:			deg.py
Run	F5:									 deg.py

radians	=	degrees	*	3.14 /	180.
print(degrees,	radians)

x = 0.
xmax = 10.
xincr = 2.

while x < xmax:
y = x * x
print(x, y)
x += xincr

Debugging	Tip

IDLE	shell	retains	variables	in	scope	after	running	
program:

dir()

print(degree)

Comments

in	line	text	after	#	is	ignored
#	can	be	in	any	column

Text	within	triple	quotes
“”” This is a multi-line
comment that will be
compiled to a string but
will not execute anything.
It is code so it must conform
to indenting ”””

sample2.py

s = “shrubbery”
print(s)

len(s)

Strings
Sequence	of	characters	such	as			s	=	“abcdefg”
Indexed	with	[]	starting	at	[0]

s[0]	is	a,		s[1]	is	b

s[-1]	refers	to	last	character	in	string.
Negative	indexing	starts	at	last	character.

Use	s[p:q]	for	string	slicing.
s[3:]	evaluated	as	“defg”
s[:3] evaluated	as	“abc”		up	to	but	not	3
s[1:-2] evaluated	as	“bcde”

up	to	but	not	including	-2

String	Concatenation

first = ‘John’
last = ‘Cleese’

full = first + “ “ + last

sp = “ “
full = first + sp + last

+	Operator	is	Operand	“Aware”

>>>	“water” + “fall” #	concatenate

>>>	3 + 5 #	addition
__
>>>	3 + “George” #	unsupported	type

>>>	“George” + 3 #	TypeError

Printing
pi = 3.14159
print (‘The answer is ‘ + str(pi))

#	cast	float	to	string	to	avoid	TypeError

The	Immutable	String

Can’t	replace	characters	in	a	string.

s = “abcd”

s[1] = “g” Object	does	not	support	item	
assignment

s = “agcd” #	re-assign	entire	string

Automatic	Memory	Managment

malloc() realloc() free()
char name[32]

name = “as long as you want”

len(name) #	len()		function	is	part	of	__builtins__

Conditionals
a = 3

if a > 0:
print (“a is positive”)

elif a < 0:
print(“a is negative”)

else:
print (“a = 0”)

String		Exercise

Degrees	to	radians:
Print	column	titles
Right	align	degree	values
Limit	radians	to	7	characters

Reminder:			len(s)

str			Under	the	Hood
str - is	a	Class!								Not	just	a	memory	area	of	characters

Object	oriented	programming
Encapsulated	data	and	methods
Use	the	dot				.			to	address	methods	and	data

a = “hello”
a.upper() #	returns	“HELLO”

type(a)
dir(str)
help(str)

hidden	methods	start	with	__

>>>	help()
help>		topics
help>	STRINGMETHODS

Math	module

import math
dir(math)

math.sqrt(x)
math.sin(x)
math.cos(x)

from math import *
dir()

sqrt(x)

from math import pi
dir()

print pi

import from as

Keywords for	Inclusion

import	math	Exercise

Degrees	to	radians	and	now	cosine:
Use	math.pi	for	defined	constant
Use	math.cos(radian)	to	compute	cosine
Print	cosine	in	3rd column

Align	cosine	to	decimal	point
(Do	not	truncate	the	cosine)

Data Structures
Resemble arrays in other languages

List			[] #	ordered	sequence	of	stuff

Tuple		() #	n-tuple,	immutable

Dictionary	{	} #	key	– value	pairs

Lists		[]
Indexed	from	[0]
Last	index	is	[-1]			or		length	- 1

Class	object	with	its	own	methods,	e.g.
.append()
.sort()

Magic	slice	operator	:
Magic	iter() function actually		__iter__()

min()			max()			are	builtins

Declare	a	List

x = [14, 23, 34, 42, 50, 59]

x.append(66) #	works	in	place,	no	return

Identify	the	sequence?
x.append(“Spring	St”,	“Canal	St”)

x[0] = 12 #	list	is	mutable,	can	replace	values	
x = [] #	can	append	to	empty	list
x = list()

List	methods
append()
extend()
insert()
remove()
sort() #	in	place,	does	not	return	a	new	list
reverse() #	in	place
index()
count()

cList = aList + bList #	concatenate	lists

range()	Function	
range(stop) # assumes start=0 and incr=1
range(start, stop) # assumes incr=1
range(start, stop, incr)

Returns	sequence of	integers,	up	to,	but	not	including	stop.
Python	2	returns	a	list.

Python	3	returns	a	"range	class"	to	save	memory.
Both	give	you	an	iterable sequence.	

range()	is	a	built-in	function:			dir(__builtins__)

Keywords Looping	with	range()

for in

for i in range(10):

for i in dayList:

List	Techniques

d = list(range(4)) #	[0,	1,	2,	3]
d = [0] * 4 #	[0,	0,	0,	0]

d = [-1 for x in range(4)]
#	[-1,	-1,	-1,	-1]		

List	Comprehension

Lists		Exercise

Degrees	to	radians,	cosines,	and	now	lists:
Create a	list	of	radians	and	a	list	of	cosines
Print	the	lists
Use	a	range()	loop	instead	of	while

Plot	Exercise
Degrees	to	radians,	cosines,	lists,	now	plot:
Plot	a	curve:		x	axis:		radians,				y	axis:		cosines

import matplotlib.pyplot as plt

plt.plot(radiansL, cosinesL)

plt.show() # displays on screen

matplotlib	+ LaTeX
import matplotlib.pyplot as plt

plt.rc(“text”, usetex=True)
set config to draw text with Tex

plt.xlabel(r”\textbf{Time}”)
#	draw	x	label	“Time”	in	bold	font
#	compare	to:			plt.xlabel(“Time”)

s = r”\n” # raw string has \n, not linefeed
latex.py	example	- requires	latex	installation

del keyword

del a[3] #	deletes	element at	index	3

del a[2:4] #	deletes	element	2	and	3	
#	list	slicing

del a #	deletes	entire	list.		a	is	gone.

Unpack	a	list	into	variables

name = [“Abe”, “Lincoln”]

first, last = name
multiple variables on left side of =
number of variables must be len(name)

List	of	Lists

d = [[0]*4 for y in range(3)]

[
[0,	0,	0,	0],
[0,	0,	0,	0],
[0,	0,	0,	0]

]

d[2][0]	=	5
[

[0,	0,	0,	0],
[0,	0,	0,	0],
[5,	0,	0,	0]

]

N-dimensional	Arrays
import numpy

ndarray class – optimized to be very fast.
Integrated with matplotlib for graphing.

princeton.edu/~efeibush
Python	Programming	mini-course

numpy
numpy2016.pdf

49

numpy.arange()

Note:		arange	can	use	floats	for	interval	&	step	

import numpy
radA = numpy.arange(1.5, 2.5, .1)

#	Returns	numpy	array	of	evenly	spaced	floats
#	min,						max,							step

for x in radA: #	can	iterate	on	numpy	array

numpy.linspace()

Note:		linspace	can	use	floats	for	interval
integer	for	number	of	steps	

import numpy
a = numpy.linspace(1.5, 2.5, 11)

#	Returns	numpy	array	of	evenly	spaced	floats
#	min,	max,	number	of	steps

a = list(a) # cast array to list

for x in a:

python	Runs	your	program
2.	Command	Line	version

python sample1.py

sample1.py	source	code	is	run	directly	instead	
of	compile,	link,	run

No		.obj		nor		.o		files	of	compiled	code
No	.exe		nor		a.out		of	executable	code

python -i exdeg.py

Command	Line	Arguments

import sys
print (sys.argv)

sys.argv	is	a	list
sys.argv[0]		has	the	name	of	the	python	file.
Subsequent	locations	have	command	line	args.
Does	not	apply	in	interpreter.

>>>	help(sys)

Shell	Scripting
import os

fileL = [] #	set	up	a	list

for f in os.listdir("."):
if f.endswith(".py"):

print(f)
fileL.append(f)

fileL.sort() #	list	function,	sort	in	place

print (fileL)

#	much	better	text	handling	than	csh	or	bash;			shell	independent

import subprocess #	Advanced
#	then	use	the	Popen	class	for	running	programs

#!/bin/csh

foreach file	(*.py)
echo	$file
end

Defining	a	Function
Block	of	code	separate	from	main.

Define	function	before	calling	it.

def myAdd(a, b): #	define	before	calling
return a + b

p = 25 #	main	section	of	code
q = 30

r = myAdd(p, q) #	case	sensitive

Keywords

Functions		(methods,	subroutines)
def
return

Define	a	Function	Exercise

Degrees	to	radians,	cosines,	lists,	now	function:
Format	the	radians	using	a	function	call

import

import math #	knows	where	to	find	it

import sys
sys.path.append(“/Users/efeibush/spline”)
import cubic.py #	import	your	own	code

reload	– debugging	your	own	module	from	the	interpreter

n-Tuple		()
Immutable	List
Saves	some	memory
Cannot	be	modified	when	passed	to	subroutine

aTuple = tuple(aList) #	Create	from	a	list
#	No	append,	no	assignment;		OK	to	extract	slice

cTuple = aTuple + bTuple #	OK	to	concatenate

print aTuple[0] #	index	using	brackets

Dictionary { }
Key	:	Value
Look	up	table
Index	by	key		-- Any	hashable	(immutable) type
print d[key] #	prints	value	for	specified	key

Order	of	key:value	pairs	is	not	guaranteed.
Good	for	command	line	arguments

name	list	files,	nicknames,	etc.
d[key] = value #	to	add	a	key-value	pair

such	as				d[“New Jersey”] = “Trenton”

Dictionary	methods
d = { }
d = dict()

eDict.update(gDict) # combine dictionaries

del eDict[key]

if key in eDict:
print (eDict[key])

d.keys() #	returns	set	of	all	keys
d.items() #	returns	set	of	all key:value		pairs	as	tuples

Read	a	Text	File
gFile = open("myfile.txt”, “r”) # built-in function

for j in gFile: #	python	magic:		text	file	iterates	on	lines
print j #	print	each	line

gFile.close()

see	readsplit.py						str.split()
.split()	method	parses	a	line	of	text	into	list	of	words

Write	a	Text	File
f = open("myfile.txt", "w")

#	open	is	a	built-in	function
a = 1
b = 2

f.write("Here is line " + str(a) + "\n");
f.write("Next is line " + str(b) + "\n");

f.close()
#		.write()		and		.close()		are	file	object	methods

try
except
finally

Keywords for	Exception	Handling

Summary	– Elements	of	Python

Scalar variables, operators
Strings - Class with methods
List [] tuple () dictionary { }
Control
Comments, indenting
def your own functions
import modules – use functions
Plotting
Text File I/O

Built-in	Classes
str, list, tuple, dict, file

dir(str)
help(str)

hidden	methods	start	with	__

Built-in	Functions
len()
range() #	returns	a	list	[]	of	integers
type()
input() #	read	from	standard	input

#	Python	2:		raw_input()
print()
open() #	file	I/O
help() #	interpreter

abs() round() complex()
min() max() sum() pow()

dir()											dir(__builtins__)
e.g.							help(input)

Interpreter	help()

>>> help() #	go	into	help	mode
help>

keywords
symbols
topics
modules

#	enter	topic	UPPER	CASE
q

>>>

Python		at		princeton.edu
ssh nobel.princeton.edu

% which python

/usr/bin/python
version	2.7.5

module load anaconda3/4.4.0
python 3.6

nobel
della
tiger

tigressdata

More Info & Resources
python.org
docs.python.org

princeton.edu/~efeibush/python
“notes3”	folder	has	exercises

Princeton	University	Python	Community
princetonpy.com

PICSciE walk-in	help	sessions:			Lewis	347
Tuesday	10:00	– 11:00	am									Thursday		2	– 3	pm

Where	to?
Anaconda distribution of python

matplotlib – draw graphs
numpy – arrays & math functions
scipy – algorithms & math tools
PIL - Image Processing
Multiprocessing
Pycuda à GPU, CUDA
GUI – Tkinter, pyqt, wxpython
Visualization toolkit – python scripting

Art	Contest

Write	a	pgm	(world’s	simplest)	image	file:
Replace	my	line	for	a	gradient	with	your	code	
to	make	an	image.

Change	maxIntensity	to	your	scale.

Display	your	picture:
python pgmdisplay.py

Reading	a	netCDF	File

Structured,	scientific	data	file	format
Can	read	from	URL

scipy	– netcdf_file	class	for	read/write
numpy	– multi-dimensional	data	arrays

